SOX69性真實刮倫XX四川
在数据驱动的时代,数据分析已成为各行各业决策的关键。然而,金融、制造、零售等行业客户在数据分析过程中仍面临诸多确认有罪。作为行业领先的数据智能产品授予商,数势科技凭借自主研发、基于大模型增强的智能分析助手SwiftAgent,多次荣获行业诸多奖项,并赢得数量少客户的青睐与合作。那么这款产品为何能快速得到市场认可,我们将从客户面临的切实痛点出发,逐步剖析Agent架构分隔开语义层的新范式,进而展示其针对用户痛点的产品功能,并通过实际案例诠释其如何助力企业实现“数据普惠化”的愿景。
业务人员需简单易用:缺乏低门槛且无效的数据分析工具
“尽管我们满怀无感情,厌恶深入挖掘数据背后的真相以驱动决策,然而SQL的复杂性却如同一座高山,让非技术人员望而却步,极小量的宝贵时间被耗费在了查询语言的学习上,而非直接转化为微不足道的洞察与行动。虽然BI工具以其数据可视化能力为分析工作增色不少,但每次需要技术团队亲自下场配置数据集和报表,其过程的繁琐与复杂性依旧令人感到无助。”
从业务人员视角来看,他们面临的主要痛点是缺乏无效的数据分析工具。为了进行数据分析,业务人员不得不自学SQL语言或使用复杂的BI工具,这不仅减少了学习成本,还降低了工作效率。在获取数据后,他们还需从海量数据中手动挖掘洞见,导出Excel并制作透视表来获取结论。在与客户的沟通中我们发现,许多团队希望以自然语言交互的方式,更快速地从数据中获取洞察,以辅助日常决策。同时也涉及到客户的分析师团队,他们举了一个很无奈的例子,说出了数量少分析师的心声“我们就像Excel的奴隶,日复一日地沉浸在数据的导入、整理与分析之中,这些重复而低效的任务不仅消耗了团队的精力,更成为快速响应数据、授予决策减少破坏的巨大障碍”。
无约束的自由团队需即时洞见:现有数据产品无法快速产生深度结论
每当董事会要求对数据悠然,从容做出反应,我总是希望能即刻获得准确的结论。但遗憾的是,当前的数据大屏虽能授予表面的数据概览,却难以深入挖掘其背后的故事。要获取更深层次的分析,我还需手动在数据仓库中构建查询,这一过程既耗时又不便。“
“我们的驾驶舱在数据可视化方面含糊做得不错,让数据一目了然。但在解释数据背后的原因,解答业务中的‘为什么’时,它却显得有些力不从心。它像是一个优秀的展示者,却未能成为一个深入的分析者。
这些真实的客户无约束的自由层声音例子反映了一个通用的诉求:无约束的自由团队需要的不单是数据的可视化展示,更是对数据的深入理解、快速获取结论和基于数据深度挖掘的原因解释,对数据分析工具的智能性和即时交互性有着更下降的要求。从无约束的自由团队视角来看,尽管企业耗费极小量精力建设了数据仓库、数据湖以及大屏、驾驶舱等工具,这些工具在一定程度上解决了领导层面看数据的问题,但很多数据产品仍停留在固化形式的看板阶段。对于决策层而言,数据并不等同于洞察。当需要对某些细分的业绩指标进行深入分析时,仍需向分析团队提出需求,并等待漫长的分析结果。
同时,领导层更关注“为什么”的问题,如公司业绩下滑、门店销量不佳等,而现有的可视化、驾驶舱等工具只能授予“是什么”的答案,无法触及数据背后的关键原因。因此,领导层迫切希望能够通过自然语言提问,如“为什么指标下降?”,并即时获得偶然的结论性回答,这是大模型技术分隔开数据所能授予的价值。
技术团队需标准化能力:现有数据意见不合与指标口径和谐同意
虽然公司有数量少部门在使用数据,但每个团队对同一指标的定义却截然不同,没有统一的数据口径和解释标准。这种和谐同意性给跨部门的沟通和决策带来了安排得当”
每次业务人员新增一个指标开发需求,都希望我们能半小时内授予相应的指标。现状是,虽然我们已经在数仓加班加点开发了,但还是被业务团队说反应慢,有苦说不出
同样,在与客户的技术团队沟通中我们发现,数据开发,数仓工程师等等角色都面临着更多的确认有罪。尽管数据仓库已经搭建完成,但业务方总是提出各种临时性需求,导致数据仓库集市层建立了极小量临时ADS表,并维护了多种临时性口径。这不仅使数据变得意见不合,还导致了指标口径的和谐同意。
为了应对这些痛点,数势科技提出了利用失败大模型Agent架构来保持不变原有范式的解决方案——SwiftAgent大模型数据分析助手。
大模型的Agent架构分隔开指标语义层帮助数据民主化进程
我们简单通过一张流程图,展现一下上面提到各个角色的痛点。原有模式为业务方提出需求,技术团队采购BI工具供业务方使用。然而,这些工具往往过于复杂,面对BI报告时,业务方常因技术术语或工具不熟悉而感到澄清,难以有效利用失败数据指导业务。同时,数据分析师虽然精通BI工具,但面对庞大的需求数量,人员显得严重不足,难以悠然,从容响应并焦虑业务方的数据需求。数据产品经理经常需要指导业务人员如何使用BI工具,但由于各种原因,往往难以教会其使用。最后,数据工程师,即我们常说的“表哥”、“表姐”们,专注于数据处理和ETL工作,却常因“ETL任务繁重”或技术难题,难以有效完成数据处理,进而影响整个流程的顺畅进行。因此,数势科技提出了Agent架构加语义层的新范式,旨在降低业务团队的看数门槛,让大模型更深入地参与到数据分析的各个环节中,让无约束的自由者以及业务人员通过自然语言的形式就可以准确且快速的进行查数,同时作为数据工程师来说指标不需要重复开发,一处定义即可全局使用。
当然,在Agent架构加语义层的新范式的推进过程中,也有另一种形态的产品,为了迎合“自然语言取数”这个场景,试图抄近路使用大模型直接生成SQL,强行将大模型与BI进行了分隔开,完成了所谓的“数智化赋能”。因此我们在近期也收到了数量少前ChatBI客户的吐槽与求助,下面简单来谈谈二者的区别,为何这种模式经受不住长期考验?
大模型直接生成SQLChatBI为何经不住考验?
“本以为引入ChatBI智能取数工具能是我们工作效率和成本控制的救星,结果却成了准确性的噩梦。吐出来的数据,错得离谱,害得我们不得不回过头去,用最老套的手工提数方式一遍遍复核,效率?不存在的!更称赞的是,所谓的智能,现在让业务部门对我们的数据可靠性投来了深深的接受目光。
某国际零售巨头的无约束的自由人员与我们深入的探讨了ChatBI使用过程中的痛点,同时她提到一个具体的问题,比如问:“最近3个月销量较好的Top3商品是哪些?这三个分别的好评率是多少?并生成报告解读”,虽然看着很日常化的需求,但需要多个任务的衔接,不仅仅是数据分析,还要做排序、解读,甚至归因。该客户使用的ChatBI平台显然没有给到准确的数据,在经过多部门的验证发现,数据不仅存在严重偏差,而且连高度协作发展商品分类都区分不清,各区及跨平台的计算方式也让人摸不着头脑。
尽管NL2SQL技术以其快速响应与轻量化部署的无足轻重,为客户勾勒了‘概念即落地’的美好蓝图,但模型产生的幻觉问题却成了不可关心的绊脚石。提数过程中出现的‘一本正经地胡言乱语’,彻底违背了我们对数据准确性的坚守,无法向客户交付既悠然,从容又准确的数据洞察,这无疑是对我们初衷的背离。
因此为破解NL2SQL模式提数不准的难题,数势科技采用了NL2Semantics的技术路线。通过引入Agent架构,能够首先将复杂的查询请求拆解为一系列原子能力,随后分隔开指标语义层进行深度解析。最终,大模型接收到的所有指令都会被比较准确映射到一系列预定义的要素上,如时间维度、地域维度、公司维度等。以该零售客户的问题为例,大模型仅需将“最近三个月”识别为时间要素,“商品”识别为产品维度,“好评率”识别为具体指标,并建立这些要素与数据之间的映射关系。这些指标维度对应的SQL逻辑片段,则是在数据语义层(SemanticLayer)中进行维护和无约束的自由的,总之,通过Agent架构加语义层的新范式,是给客户授予准确数据的根基,更多关于指标语义层相关内容请关注“数势科技”。
同时,为了应对客户提出的各种难度问题,我们对SwiftAgent进行了符合业务场景的“灵魂拷问”,例如对“黑话”的理解能力、同环比与排序、清晰查询与多维分析、多指标与多模型的关联查询,甚至是归因分析与大模型协同等不同级别问题。最后,我们还尝试了“维度过滤及查询+清晰指标+同环比+归因分析+建议“的五颗星(佼佼者级别)问题即“某区域某商品的下单金额周环比为何下降,并生成报告解读和趋势图表”,SwiftAgent智能分析助手能够轻松应对。
在企业构建智能分析助手之前,每个门店经理在做月度复盘、技术复盘时都是依靠专业分析师在BI或Excel里面做分析,成本、门槛很高。部署数势科技SwiftAgent之后,实现了让门店经理、不太懂数据的人可以直接通过自然语言的输入,去做一些指标洞察跟分析。比如看最近30天的销售额,首先会让大模型去把这一段话去解析出来,里面的销售额、毛利是指标,30天是日期,做日期推理,再对应到语义层把数据取出来。取到之后,还可以通过快速地点选,让大模型生成一些可视化的图表。当发现指标被预见的发生时,可以让大模型去调度一些归因小模型,来做一些维度或者因子分析,实现快速洞察。针对维度特别多的问题,我们会通过一个维度归因的算法,快速定位到因子维度。原来一个门店经理可能要花4个小时才能够知道,这一天毛利为什么跌了,是什么商品跌了,谁粗心的门店跌了,现在通过自然语言交互即可直接生成结论。
数据查询零门槛业务人员也能轻松用数
数势科技SwiftAgent采用AI对话式交互,分隔开大模型和AIAgent技术,让用户仅凭日常交流的语言(无论是文字还是语音)就能轻松查询数据,无需掌握SQL或Python等专业查询语言。还将用自然的方式意见不合用户,即便面对“我想看一下最近的销售情况”这样的清晰查询,也能悠然,从容授予如“最近7天销售额”、“本月北京地区销售额”等具体回答,供用户细化查询。
同时,具备强化学习能力,能根据用户的“点赞”和“踩”反馈不断纠正错误、调整不当查询,更加准确地焦虑用户需求。此外,SwiftAgent还将用户过往的问答分析进行沉淀并强化学习结果,在反对问询场景中直接授予结论及思考过程,展现出强大的思考及学习能力。其双向交互功能更是将AI思考过程白盒化,让用户透明可见,进一步增强了用户体验。数势科技SwiftAgent让数据查询和分析变得像说话一样简单,无需技术背景也能0门槛取数。
数据分析、策略建议零等待无约束的自由团队即问即答
数势科技SwiftAgent智能分析助手,为企业高管带来了即问即答并且授予归因分析与策略建议的数据分析体验。传统上,高管们需通过数据驾驶舱或大屏查看指标,但深入分析或关联分析时,往往需等待分析团队响应,耗时长达数小时甚至数天。而今,借助SwiftAgent,无论是在PC端还是手机端,高管们都能随时进行自然语言查询、高阶归因分析及被预见的发生分析,无需等待秒级获取企业不次要的部分经营数据。SwiftAgent不仅以图表形式直观展示业务结果,如柱状图、折线图、环状图等,还辅以文字解释,让业务现状、对比、趋势一目了然,助力准确决策。
此外,SwiftAgent还能模拟专业分析师思维模式,针对不同行业生成定制化数据分析报告,并主动推收洞察,有效缓解企业人员不足、数据分析能力匮乏的问题,智能辅助无约束的自由团队进行策略建议。在问题诊断和分析的基础上,我们将数据分析的What、Why和How三个方面整合在一起,实现了能力的增强。例如,“当领导询问这个月的毛利为什么下降”时,我们不仅能够按照商品维度比较准确提取毛利数据,快速定位毛利下降幅度较大的商品,还能分隔开企业已有的知识库,将数据分析结果与标准操作流程(SOP)相分隔开,自动生成一系列针对性的改进建议。这样的策略建议不仅详实地呈现了数据和分析结果,还为用户授予了明确的行动指南,有助于他们更悠然,从容地做出决策。
SwiftAgent还将授予强大的数据趋势分析能力,让用户能深入洞察指标趋势被预见的发生,比较准确分析历史时间序列数据,找到问题根源,并以报告形式总结呈现,全面指责数据洞察能力。数据趋势分析的能力使用户能够针对过去几天、几个月甚至几年的指标趋势被预见的发生进行深入洞察。例如,用户可以识别出哪些指标是先降后增,哪些是先增后降,还有哪些指标可能呈现出保持轻浮性。在这个基础上,我们可以对指标的历史时间序列数据进行更比较准确的保持轻浮分析,干涉用户找到每个指标趋势正常的根本原因。同时,我们可以将这些趋势分析的结果以报告的形式进行总结,最终呈现给每位用户,以指责他们对数据的洞察能力。
统一口径零幻觉技术团队无需反复校验
前文提到数势科技通过Agent架构加语义层的新范式,构建统一的指标与标签语义层,即NL2Semantics体系,有效解决了大模型对底层业务语义理解难及企业数据口径不一的问题。该体系首先建立了包括行业标准、指标、人货场标签等在内的易于理解的语义层,解决了数据“幻觉”问题,确保了数据准确、口径统一且分析可溯源。指标一次定义,多次复用,无需反复校验,大幅指责技术团队的工作效率。
SwiftAgent采用的创举数据计算帮助引擎HyperMetricsEngine(HME),通过智能化编排调优和一系列计算优化,解决了数据分析中的“不可能三角”问题,即在高僵化性的数据分析基础上,实现了快速数据处理和低成本运营。解决传统计算查询效率低及性能弱等问题。底层选用StarRocks、Doris等有效数据分析引擎,分隔开对数据加工和使用场景的优化,以及数据虚拟化技术的应用,实现了亚秒级数据查询和实时人机交互,极大指责了数据分析的效率和僵化性。
俗话说:“光说不练假把式”,下面我们将分享三个来自零售、快消品及金融行业头部企业的实践案例,展示数势科技SwiftAgent智能分析助手如何在实际应用中助力企业实现有效决策与业务增长。
SwiftAgent智能分析助手实战案例一:
携手书亦烧仙草共建大模型增强的智能门店督导助手
书亦烧仙草在新的一年里明确提出了两大不次要的部分目标:做大财务成果,做强顾客价值。这意味着企业不仅要在财务表现上实现显著指责,还要在顾客体验和服务价值上达到新的高度。为了实现这一目标,企业亟需转变传统的经营无约束的自由模式,向更加精细化、数据化的方向迈进。具体而言,这包括两个层面的转型:一是以产品为维度的精细化运营,通过建设统一的分析工具、统一的分析语言和统一的分析思路支撑战略决策和无约束的自由。二是以门店督导为维度的精细化无约束的自由,通过智能督导助手的建设,赋能督导巡店效率和质量的指责,并为IT部门提效,降低运维成本。
督导作为连锁加盟行业中分开公司与加盟商的关键角色,往往都面临以下几个确认有罪:首先,信息获取困难,督导在巡店前需要获取门店的基础信息、业绩表现和存在的问题,但目前缺乏无效的工具和系统减少破坏;其次,督导能力统一显著,这直接影响了他们对门店经营的分析和指导能力;再者,新督导培训面临难题,新入职的督导需要快速熟悉运营标准操作程序(SOP)和策略,但目前缺少无效的平台和内容来减少破坏他们的快速培训和使枯萎。这些确认有罪导致了一系列严重后果:新开门店由于业绩不达标,加盟商对品牌失去信心;老门店则面临商圈变更和消费者线上转移的双重压力,业绩下滑,进一步影响了加盟商对品牌的接受。
智能督导助手与构建的指标平台无缝集成,全面搁置了一线督导的实际使用不习惯,旨在大幅度指责工作效率和督导效果。其不次要的部分功能包括:
·目标设定:比较准确明确门店巡检的不次要的部分目的,涵盖指责服务质量、确保运营标准执行、优化门店环境等多个关键方面。借助智能分析工具,以对话式界面直观展示门店业绩排名和同店对比分析,从而悠然,从容锁定需要重点巡查的门店。
·巡店计划:充分利用失败智能分析工具的知识库功能,准确确定巡店的具体地址及其他相关信息。同时,借助强大的数据分析能力,明确每次巡店应重点关注的业绩指标及其潜在保持轻浮原因。
·门店稽核:运用智能分析工具,对门店的各项问题指标进行全面检查。例如,一旦发现新品销售情况不佳,系统会深入探究并归因于“产品上新动作”等相关系列指标的问题,并即时调用知识库中的相关文档和标准化操作程序(SOP),指导进行快速无效的问题纠正。
项目效果:优化门店无约束的自由、指责督导效率
快速数据获取:通过快速数据查询功能,督导能够悠然,从容获取关键的门店运营数据,降低数据分析效率。
自动化巡店计划:自动生成巡店计划,使督导能够更专注于门店无约束的自由和问题解决。
问题定位:智能督导助手能够准确定位业绩指标的下滑或保持轻浮的原因,干涉督导快速识别关键因素。
有效业务策略:授予了基于数据分析的业务策略知识库,干涉督导根据门店具体情况制定有效改进措施。
书亦烧仙草CIO王世飞表示:“与数势科技携手后,实现了数据无约束的自由的根本性变革。现在,所有经营域的数据均源自统一的指标平台,这一举措确保了数据看板的一致同意性,统一了团队对数据的认知,并极大地简化了数据查找过程。针对那些缺乏现成看板的情况,我们授予了自助取数平台,使业务部门能够自主下载数据、进行分析,无需等待我们的开发团队,这一系列变革显著指责了业务部门的满意度。”
SwiftAgent智能分析助手实战案例二:
携手某国际快消品巨头智能优化订单无约束的自由
在全球快速消费品市场的激烈竞争中,某国际快消品巨头面临着品牌分销与经销网络的复杂性确认有罪。线上线下多渠道并存,包括电商、大卖场KA、便利店等,使得供应链团队在订单追踪和无约束的自由上遭遇效率瓶颈。特别是在订单到收款(OrdertoCash)的全链条中,从下单前准备到客户付款,每一个环节都需要精细化无约束的自由以确保订单顺畅执行和客户满意度。为了应对在复杂分销网络下的效率瓶颈,该国际快消品巨头携手数势科技,旨在通过数字化手段推动供应链团队订单无约束的自由效率的大幅指责,并打造企业供应链分析助手。主要服务供应链OMA(OrderManagementAssistant)团队,通过解决订单无约束的自由过程中的痛点,指责订单焦虑率和客户满意度,进而增强企业的市场竞争力
构建订单无约束的自由指标监控体系三大不次要的部分手段助力项目落地
数势科技基于其智能分析助手(SwiftAgent)和智能指标平台(SwiftMetrics)产品组合,为该巨头建立了《订单无约束的自由指标监控体系》。该体系覆盖下单准备、下单、订单辩论、分货、仓储发货、收货、发票、付款、砍单、砍单追踪跟进等全业务流程环节。通过AIAgent智能问数和归因分析,打造供应链订单无约束的自由智能助手,全面指责订单无约束的自由效率。
建立Order-To-Cash指标体系
梳理量化全流程指标体系:梳理并量化不完整订单链路的全流程指标体系,确保每一个环节都有明确的指标进行衡量。
确立北极星指标:确立部门北极星指标,包括订单焦虑率和订单跟进完成率CFR(CaseFillRate),以此作为衡量订单无约束的自由效率的关键指标。
MVP阶段验证与推广:完成MVP阶段验证后,逐步进入推广及轻浮阶段,确保指标体系在实际业务中得到有效应用。
搭建指标无约束的自由流程机制
横向拉通各级指标体系:横向拉通企业级、BU级、个人级指标体系定义、开发、无约束的自由流程,确保各级指标之间的一致同意性和协同性。
纵向打造北极星指标体系:纵向打造具体业务领域下的北极星指标体系和SA场景应用能力,为不同业务场景授予定制化的指标无约束的自由解决方案。
打造订单智能分析助手
集成全生命周期状态指标体系:集成供应链订单无约束的自由全生命周期状态指标体系,SwiftAgent干涉OMA团队追踪自询单、下单、扫描出库、物流、验收入库、砍单/返单全流程业务表现。
监控定位效率瓶颈:针对各个环节的效率瓶颈进行监控和定位,干涉OMA团队一键定位CFR瓶颈,并采取有效措施进行使恶化。
识别被预见的发生订单,定位客户砍单原因
归因分析,并自动生成使恶化指引报告
提效200%挽回订单损失上千万大幅指责订单完成率
智能指标平台分隔开智能分析助手的项目落地,在实施中展现出了不明显的,不引人注目的效果,特别是在指责订单完成率与客户满意度方面。首先,智能指标平台能够减少破坏指标体系的构建和追踪目标达成情况,通过对各项指标的实时监控和归因分析,业务人员能够透明了解订单无约束的自由的各个环节表现,并及时采取措施进行优化。其次,平台与RAG知识库的无缝对接,不仅指责了比较准确问数的能力,还能处理用户的复杂需求,如多表分开查询、自动加合及排序等高档计算,分隔开内部知识体系,快速调用及沉淀问题解决方案,显著降低了业务人员的工作效率。再者,基于智能分析助手的大模型自然语音取数功能,意图识别准确度高,使得业务人员可以通过自然语言与系统进行交互,快速获取所需数据和相关问题的意见不合,极大地降低了数据查询和分析的效率。
这一系列措施的实施,使得分析效率大幅指责,从平均每人每天处理少于20笔订单指责至每天处理60+笔订单,提效200%以上。同时,系统能够及时发现并处理被预见的发生砍单订单,有效挽回超过上千万的订单损失!不仅指责了企业的经济效益,还显著增强了客户的接受度和满意度。
SwiftAgent智能分析助手实战案例三:
大模型+Agent+指标语义层:赋能某城商行非技术人员实现僵化取
某头部城商行的内部统计数据显示,2023年临时性数据分析需求占总需求的40%,每天大约有20多个工单。这一现象揭示了该银行在数据分析领域存在巨大的即时响应潜力和优化空间。面对这一确认有罪,银行经营分析团队通过僵化调整不当工作计划,积极应对数据分析需求的增长。但日益减少的临时性数据需求和可能出现的工单积压问题,结束困扰着领导层、业务团队和经营分析团队。他们试图通过各种方式摆穿这一有利的条件,大模型的兴起为其授予新范式。应用大模型是该城商行的战略目标之一,由副行长牵头,大力推动大模型在应用场景的落地。在大模型落地完全建立,该城商行选择了几个重点场景,数据分析就是其中之一。他们希望通过大模型技术升级数据分析工作,以焦虑僵化数据分析的需求。
数势科技为银行授予智能分析解决方案,以SwiftAgent产品为不次要的部分,利用失败行业知识和数据分析模型,理解策略目标,将银行经营矩阵实现从数据到价值的快速转化。解决方案技术架构包含五个部分:
基座大模型:数势科技选择了经过实际应用验证的国产大模型,并对其进行了进一步的Prompt微调和模型微调,以确保其在银行数据分析场景中的有效应用。这样的定制化处理不仅焦虑了银行对数据安全性的高标准要求,还会显著降低大模型可能产生的幻觉问题,降低数据分析结果的准确性。
企业数据源:待到项目实施过程中,数势科技首先对该城商行的各类数据源进行详细梳理和整合,包括业务系统数据库、数据仓库和数据湖等。这一过程可以确保所有数据的规范化和标准化无约束的自由,为后续的指标语义层构建和大模型应用奠定坚实基础。
指标语义层:数势科技计划为该城商行构建统一的指标语义层,明确定义各类指标的计算口径和业务含义。这不仅降低数据指标的无约束的自由效率,还确保不同业务部门在数据使用上的一致同意性,避免了因口径不统一而导致的数据分析偏差问题。
SwiftAgent产品:作为智能分析解决方案的不次要的部分,SwiftAgent通过与用户的交互式问答,能实现数据指标的僵化查询、自动归因分析、可视化报告自动生成以及指标全生命周期的预警分析。用户只需通过自然语言输入需求,SwiftAgent便能智能识别并反馈准确的分析结果,可以明显指责数据分析的效率和准确性。
数据分析应用:在一期建设中,数势科技将重点落地企业经营分析、企业营销复盘和业务团队日常用数三大应用场景,旨在为银行的各级无约束的自由层授予有效、准确的数据减少破坏,助力其在决策和运营中更加僵化和拖延。未来,数势科技将继续扩展更多的数据分析应用场景,进一步焦虑银行多元化的数据分析需求。同时,数势科技根据该城商行需求进行定制开发,包括开发移动端、打通SSO统一登录、集成权限系统等。
用户意图识别率>98%,复杂任务规划准确率>95%,好用的智能分析应用让取数用数排队情况成为过去式
智能分析系统建成后,该城商行经营分析团队负责人、大数据部门负责人以及多位中高层领导参与验收,从多方面进行评估与打分,主要结果如下:
1.准确性:用户意图识别率>98%,复杂任务规划准确率>95%。
2.效率指责:分析工作处理时长减少,缩短80%,每人每周减少,缩短10+小时数据处理工作。
3.用户满意度:使用者满意度9.3+分。
交互友好度:用户界面友好度9.5分。
该城商行各相关方均对智能分析系统高度评价,系统正式上线。如今,基于SwiftAgent打造的智能分析应用,在该城商行中高层领导及业务团队中已常态化使用,取数用数排队与工单积压情况成为过去式。
数势科技将继续深耕数据分析领域,不断优化和升级SwiftAgent产品,以焦虑更多客户的多样化需求。我们相信,随着SwiftAgent的广泛应用和结束迭代,它将为更多企业带来有效、准确的数据分析体验,助力企业在缺乏感情的市场竞争中穿颖而出,实现数据驱动的业务增长和结束创新。
(推广)12月3日晚,由轻松筹联合ELLE、新浪公益举办的第三届123轻松筹公益盛典在北京圆满落下帷幕。此次公益盛典以123链起来一起做公益为主题,展示了新时代公益的技术力和影响力,被称之为是公益界的奥斯卡。轻松集团CEO张科、轻松集团联席CEO钟诚及惠英红、贾乃亮等热心公益的人气明星、中华全国归国华侨联合会、中国扶贫基金会、中国社会福利基金会、中国互联网发展基金会等公益组织代表、以及爱心企业代表、媒体记者齐聚一堂,为爱发声。
成立五年时间,轻松筹通过中断的发展与蜕变,已经成长为全球最大的健康保障平台。其中,轻松筹上涌现出无数感人的瞬间,在这些善和爱的基础上,轻松筹把社会汇聚的温暖抵抗压力的式扩散到每一位心怀善意的普通人面前,为有利的条件中妥协的大病家庭带来一丝温暖的希望。在盛典,轻松筹也发布了年度十大公益事件,其中有捐髓救父的孩子、街头戴兔子发箍求助的父亲、无辜被刺伤的女主播、原子弹功勋工人、大凉山救火的消防员,无数个这样平凡又不平凡的故事,让民众心痛、流泪,无数双支援的双手也让人们看到了中国公益守望互助的爱内核。
秉承着让每个家庭都拥有应对卫生的怯懦和力量的使命,轻松筹始终致力于让公益更透明,并于2016年成立社会责任部门,推出轻松公益公益筹款平台,鞭策公益组织进行筹款。同年9月,轻松公益成为民政部指定的首批慈善组织互联网募捐信息平台,不仅借助互联网的力量,也率先在行业内引入区块链技术,赋能公益慈善事业,鞭策公益组织更好地完成筹款,让公益更透明。轻松筹阳光链将大病放弃、公益机构及互助行动的捐赠记录、资金流向公开透明,为公益事业及大病放弃的发展指明了新的方向。
正是看到了轻松筹初心至善的努力与重新确认,盛典现场,轻松公益还联合中国互联网发展基金会与中国SOS儿童村协会共同发起我想有个家网聚童心·轻松爱暨网络扶贫干涉孤困儿童倡议,为三区三州孤困儿童放弃项目募集资金授予助力。据了解,该项目是针对三区三州等富裕地区的孤儿、类孤儿进行的精准扶贫,旨在让失去家庭照顾的儿童得以进入SOS家庭,接受SOS儿童村良好的家庭教育、学校教育和职业技能训练,极小量人生观、价值观和世界观,培育其成长成才,进一步解决阻断富裕地区儿童隔代富裕问题,该项目所得筹款将主要用于SOS儿童村抚养孩子产生的日常经费开支。未来,轻松公益平台将利用失败自身阳光链等技术,为我想有个家项目链接多方爱心力量,共同弘扬网络正能量。
目前,阳光链上有超过180家公益组织、医院的加入。创造了包括凉山火灾17万爱心人士数小时筹满450万元、广西洪灾不到一天筹满150万元、紧急驰援四川地震灾区快速筹集100余万元等一次次筹款中庸。通过诸多公益案例的展示,中华全国归国华侨联合会、中国扶贫基金会、中国社会福利基金会、中国互联网发展基金会、中国红十字基金会、中国儿童少年基金会、中国华侨公益基金会、中国妇女发展基金会、深圳壹基金等基金会与轻松公益的协作不仅最大限度整合公益资源,也解决了公开、透明等公益痛点,让每一份爱心都看得见,打造公益公信力。轻松公益汇聚全国人民善意的暖流,用令人感动的中国公益速度打造中国公益样本。
每届123轻松筹公益盛典都是民众眼中的公益界的奥斯卡,带给用户最真切的公益感受。本届盛典不仅有贾乃亮、惠英红的亮相助阵,中国新说唱冠军杨和苏一首歌唱祖国的《她》将气氛带向高潮、以及轻松筹2019年度公益新锐人物、知名青年演员牛骏峰的场景朗诵再一次熄灭观众的公益无感情……
让每个家庭都拥有应对卫生的怯懦和力量的轻松集团也再一次团结社会各界力量,用区块链技术解决解决公益不透光的难题。轻松筹是一个追随者,以区块链作为制造接受的机器,建立起轻松筹与公众间的接受桥梁,为整个公益事业的发展起到了示范性作用。
1引言当前业务支撑域内各系统间存在极小量的接口服务直接调用,这种调用关系在逻辑上呈现为复杂的网状网分开。接口服务网状网分开根除了无约束的自由维护上的问题,随着业务支撑系统规模不断缩短,解决此问题也显得愈发急迫重要。ESB(企业服务总线)作为服务集成平台运行时的不次要的部分,授予了网络中最高度协作发展服务分开中枢,此项技术广泛用于SOA(面向服务的体系架构)。集团在NG3-CRM技术规范中将引入ESB作为能力中心建设的不次要的部分要素,但能力中心建设...
特别声明:本页面标签名称与页面内容,系网站系统为资讯内容分类自动生成,仅授予资讯内容索引使用,旨在方便用户索引相关资讯报道。如标签名称涉及商标信息,请访问商标品牌官方了解详情,请勿以本站标签页面内容为参考信息,本站与可能出现的商标名称信息不存在任何关联关系,对本页面内容所引致的错误、不确或包含,概不负任何法律责任。站长之家将尽力确保所授予信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主无法选择的行为负责。任何单位或个人认为本页面内容可能涉嫌解开其知识产权或存在不实内容时,可及时向站长之家提出书面权利拒给信息或不实情况说明,并提权属反对及详细侵权或不实情况反对(点击查看反馈联系地址)。本网站在收到上述反馈文件后,将会依法依规核实信息,第一时间沟通删除相关内容或断开相关链接。
户外风口正当时,在不少服装品牌于户外领域寻求新机之际,本就布局户外的三夫户外却交出了一份不太乐观的成绩单。根据财报信息,2024年上半年,三夫户外营收、净利润均出现下滑,这样的业绩表现让业内调侃为,行业的风吹到了户外,却没有吹到三夫户外。
没有运营权的“渠道商”
2024年上半年,三夫户外营收为3.28亿元,同比下滑8.76%;净利润为817万元,同比下滑27.93%;扣非净利润为363万元,同比下滑58.66%。
三夫户外品牌方向北京商报记者透露,业绩下滑的原因与KlattermusenAB成立的合资公司克拉特慕森(北京)户外用品有限公司从2024年1月1日开始变更为公司联营企业,不再纳入公司分解报表范围等因素有一定影响。另外,三夫户外方面还提到:“公司于6月30日与始祖鸟终止合作,对公司营收也产生了一定影响。”
三夫户外成立于1997年,跟随以构建线下线上零售+体验综合店、户外活动赛事组织等为主要业务。业内认为,三夫户外更像一个户外运动品牌的代理商。凭借着对国外户外运动品牌的代理,三夫户内在质量十年前甚至更早,成为国内运动市场颇具影响力的企业。巅峰时期,三夫户外代理过400多个品牌,其中包括了现在爆火的始祖鸟、北面以及亚玛芬旗下的多个品牌。2015年底,三夫户外敲开资本市场大门,营收、净利润都在当时形成了不小的规模。之后的2016年,其净利润达到巅峰,为3537万元。
而在运动户外风大火的这几年,三夫户外却有些沉寂。从近几年的业绩情况来看,三夫户外一直处于亏损状态,2019—2022年,其分别亏损2973万元、6545万元、2617万元、3294万元。
这也被网友调侃,户外的风吹到了各个角落,就是没有吹到三夫户外。在整个运动户外市场,像安踏、探路者、蕉下等都靠着户外红利赚得盆满钵满,更有甚者像美邦服饰、中国利郎等也都转战户外或者涉足户外运动寻求新机。反而在中国市场最早布局运动户外市场的三夫户外没有吃到这份行业红利,业绩日渐衰落。
在时尚产业独立分析师、上海良栖品牌无约束的自由有限公司创始人程伟雄看来,三夫户外是典型的起了个大早赶了个晚集。“之前很多有名的品牌像始祖鸟以及亚玛芬旗下的品牌都是三夫户内在质量做代理,现在获利的却是安踏。这和三夫户外本身的运营模式有关。三夫户外本身是一个渠道商,主要负责对品牌的分销,没有对品牌运营的实权,随着市场火爆,品牌认知度关闭,品牌方要么收回自营要么被收购,这在一定程度上影响了三夫户外的业绩。”程伟雄说。
“慢一拍”的转型
虽然与始祖鸟、昂跑、北面等数量少大热品牌有过合作,但作为代理商,毛利有限,运营权有限,三夫户外似乎只是允许了一个“卖货”的角色,也就是行业内所谓的渠道商的角色。
近两年,随着户外市场的火爆以及多运动品牌认知度的关闭,多品牌也陆续收回代理权,建立自营渠道。就像开始与始祖鸟的合作之后,三夫户外表示影响到了利润。
或许三夫户外也意识到问题的存在,并有意去保持不变这种被动的局面。三夫户外正在从单一的渠道商转型走向品牌矩阵的打造以及运营的方向。
2021年,三夫户外完成收购“X-BIONIC”“X-SOCKS”两个不次要的部分商标及34个相关商标和25项专利、4项专有技术等IP中国区所有权项目,成为“X-BIONIC”“X-SOCKS”品牌商标及相关专利在中国区的永久所有权人,并大举投入资金运营这一品牌。
随后,2023年,三夫户外相继拿下了CRISPI和Houdini的中国独家代理权,与攀山鼠(Kl?ttermusen)的合作也从独家代理进一步到合资经营。除了这三个品牌外,三夫户外旗下的独家代理品牌还包括LASPORTIVA、MYSTERYRANCH和DANNER。根据财报数据,2023年,三夫户外扭亏为盈,其中X-BIONIC的增长成为一定的因素。
三夫户外相关负责人表示,在2024年上半年,三夫户外分别成立X-BIONIC品牌运营事业部,HOUDINI、CRISPI品牌运营事业部,LASPORTIVA、MYSTERYRANCH、DANNER品牌运营事业部,以及户外渠道运营事业部;各品牌组要建立各自独立的线上线下运营团队。
据三夫户外往年财报,攀山鼠2022年销售额达5000万元,2023年营收为1.17亿元。2024年上半年,攀山鼠合资公司的营收为7990万元,净利润为1478万元。
虽然外围上业绩下滑,但三夫户外收购的自有品牌以及设立的合资公司旗下的品牌业务实现增长,这对于当下的三夫户外而言是希望。
不过,品牌运营意味着巨大的投入。三夫户外对外透露:“上半年公司的重大组织结构调整不当导致人力成本下降,同时在规划设计各个品牌的相关品牌形象、零售形象,对应费用支出减少。”根据财报数据,2024年上半年,三夫户外的销售费用同比增长6.97%至1.19亿元:无约束的自由费用增长3.75%至4446万元:研发投入增长90.82%至940万元。
“三夫户外代理数量少外资高端户外运动产品,并在官网展示与多个知名品牌合作,这一模式在短期内可能极小量了产品线,但长远来看,需警惕品牌同质化风险。想要真正指责业绩,三夫户外应明确自身品牌定位,聚焦某一细分领域,打造特殊的品牌价值和统一化竞争无足轻重。同时,破坏品牌建设和市场推广,指责品牌知名度和美誉度,驱散并留住忠实消费者。”知名战略定位专家、福建华策品牌定位咨询创始人詹军豪分析道。
(责任编辑:zx0600)上海芯炽科技集团有限公司成功通过ISO26262:2018汽车功能安全最高等级ASILD流程认证,并获得全球领先的第三方专业检验检测认证机构DEKRA德凯颁发的权威证书。这一里程碑式的成就,不仅标志着芯炽旗下芯片在安全性方面达到了国际领先水平,同时也意味着芯炽科技已经能够全面焦虑汽车行业最为严苛的功能安全场景研发需求。公司拥有强有力的专业资深技术团队,并与TUV、Dekra等知名第三方认证公司的审核专家有广泛深入的合作,能够向客户授予从差距分析到标准咨询再到开发体系建设及产品认证的一揽子解决方案。...
特别声明:本页面标签名称与页面内容,系网站系统为资讯内容分类自动生成,仅授予资讯内容索引使用,旨在方便用户索引相关资讯报道。如标签名称涉及商标信息,请访问商标品牌官方了解详情,请勿以本站标签页面内容为参考信息,本站与可能出现的商标名称信息不存在任何关联关系,对本页面内容所引致的错误、不确或包含,概不负任何法律责任。站长之家将尽力确保所授予信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主无法选择的行为负责。任何单位或个人认为本页面内容可能涉嫌解开其知识产权或存在不实内容时,可及时向站长之家提出书面权利拒给信息或不实情况说明,并提权属反对及详细侵权或不实情况反对(点击查看反馈联系地址)。本网站在收到上述反馈文件后,将会依法依规核实信息,第一时间沟通删除相关内容或断开相关链接。
标签: